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’ INTRODUCTION

Since the inception of methods to identify peptide ions by
tandem mass spectrometry (MS/MS) techniques,1�3 there has
been a rapid advance in mass spectrometric instrumentation
development. These advances are in large part spurred by the
need to increase the overall numbers of identified peptides and
proteins in proteomics experiments to provide the necessary
increased protein complement coverage for accurate and relevant
comparative analyses. Over the last 15 years, improvements in
mass spectrometry (MS) instrumentation have resulted in
increased numbers of assigned peptide ions obtained from liquid
chromatography (LC)�MS/MS experiments for complex pro-
teomics samples;4�6 in the characterization of human plasma
digests,7�12 numbers of assigned peptide ions in a given experi-
ment have increased by nearly 2 orders of magnitude over this
time period.

Although improvements in instrumentation sensitivity and
speed have enabled increased numbers of peptides to be identi-
fied, a problem of false identification has persisted. The problem
is so pervasive in the field that there has been a push to
standardize proteomics reporting consisting of the establishment
of guidelines for disclosure of statistical analyses used to establish
the accuracy of assignments.13 In part, instrumentation

improvements lead to the intransigence of the false identification
problem as lower-signal species move into identification range
with increased analytical performance capabilities. Typically such
species produce lower-quality spectra leading to suspect assign-
ments. There is a constant need to develop methods to improve
the confidence of peptide ion assignments.

To dramatically improve the accuracy of assignments in
proteomics studies, the measurement of new characteristics
attributable to data set features is required. As an example
consider the enabling effect of MS/MS experiments. Whereas,
the precursor ion mass is insufficient to allow identification of
peptide ions in complex proteomics samples, the addition ofMS/
MS information allows accurate assignments in many cases. A
question that arises is how will the new distinguishing character-
istics be produced? Some advocate chemometric approaches to
elucidate distinguishing characteristics buried in proteomics data
sets. For example, ongoing work consists of efforts to predict ion
fragmentation distributions (including ion intensities)14�25 as
well as LC retention26�31 in order to provide increased identi-
fication accuracy. Finally, improved separations of data set
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ABSTRACT: A new method for enhancing peptide ion identification in
proteomics analyses using ion mobility data is presented. Ideally, direct
comparisons of experimental drift times (tD) with a standard mobility
database could be used to rank candidate peptide sequence assignments.
Such a database would represent only a fraction of sequences in protein
databases and significant difficulties associated with the verification of data
for constituent peptide ions would exist. A method that employs intrinsic
amino acid size parameters to obtain ion mobility predictions that can be
used to rank candidate peptide ion assignments is proposed. Intrinsic amino
acid size parameters have been determined for doubly charged peptide ions
from an annotated yeast proteome. Predictions of ion mobilities using the
intrinsic size parameters are more accurate than those obtained from a
polynomial fit to tD versus molecular weight data. More than a 2-fold
improvement in prediction accuracy has been observed for a group of
arginine-terminated peptide ions 12 residues in length. The use of this predictive enhancement as a means to aid peptide ion
identification is discussed, and a simple peptide ion scoring scheme is presented.
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components can be used to enhance peptide ion assignments.
Examples include the use of increased mass accuracy permitting
more stringent mass matching thresholds for protein database
searches32�34 as well as precursor and fragment ion intensity
matching that includes the use of LC retention time profiles.35,36

The work presented here describes the use of an additional
precursor ion trait—ion mobility—to evaluate peptide ion
assignments. Specifically, the use of mobility data obtained from
LC�MS/MS analyses of the yeast proteome is evaluated as a
means for improving peptide ion identification. Briefly, similar to
ion mobility spectrometry (IMS) experiments performed pre-
viously,37�40 peptide ion composition is related to measured ion
mobilities to determine the general effect that the presence of
specific amino acid residues have on the overall mobilities of
database ions. Upon establishing this relationship for groups of
peptide ions, the ability to match drift times (tD) with peptide
ions based solely on amino acid composition has been evaluated.
A simple peptide ion identification scoring scheme for data
that can be produced on current commercial instrumentation
(Synapt HDMS,Waters) is discussed. Finally, it is noted that this
work is related to that attempting to predict tDs of peptide ions
using artificial neural networks (ANNs).41

’EXPERIMENTAL SECTION

General
Data from the analysis of a yeast proteome was provided by

Waters Corporation. IMS techniques,42�46 instrumentation,47�54

and theory,55�59 as well as the combination of LC with IMS-MS
instrumentation60�65 have been discussed elsewhere. Here only a
brief description of methods related to the collection of the tryptic
digest data is presented.

Eight-hundred nanagrams of a tryptic digest of S. cerevisae was
injected onto a Trapping and Nanoscale column configuration
using a nanoACQUITY (Waters) UPLC system. Peptides were
separated on the UPLC prior to being electrosprayed into the
entrance orifice of the Synapt HDMS (Waters) instrument.
Peptide ions were stored in the Trap Traveling Wave (T-Wave)
located at the front of the IMS (Ion Mobility Separation)
T-Wave device. Periodically, ion packets from the Trap T-Wave
were pulsed into the IMS T-Wave cell where ions were separated
due to their mobilities through a buffer gas (N2 for these
experiments) under the influence of a drift voltage that is rapidly
transmitted along adjacent electrostatic lenses in the IMS
T-Wave cell. The repetition of this voltage transmission
(wave) provides periodic separation of ions according to their
mobilities. Most ions have mobilities that are lower than the
transmission rate of the T-Wave voltage, causing them to “roll”
back and be separated in subsequent waves. The residence times
in the T-Wave cell can be calibrated to ion mobilities and thus to
collision cross sections. After exiting the IMS T-Wave cell, ions
are transmitted through a Transfer T-Wave collision cell into a
time-of-flight (TOF) MS device for mass analysis. The collision
energy of the Transfer T-Wave is increased on an alternate scan
basis producing approximately 10 low energy and 10 high energy
spectra across each chromatographic peak.

Yeast Digest Samples
Yeast strain W303 (MATa ura3�52 leu2�3 leu2�112

trp1�1 ade2�1 his3�11 can1�100) was grown at 30 �C to
exponential phase (A600 = 0.8) in rich YEPD medium (2% w/v
glucose, 2% w/v bactopeptone, 1% w/v yeast extract). Cells were

harvested by centrifugation andwashedwith water to remove any
traces of growth medium. Cells were resuspended in ice-cold
water and broken with glass beads using a Minibead beater
(Biospec Products, Bartlesville, OK) for 40 s at 4 �C. Cell debris
was pelleted in a microcentrifuge for 15 min (13 000 rpm; 4 �C)
and supernatants collected for further analysis.

Four-hundred micrograms of protein was suspended in 44 μL
of 50 mM ammonium bicarbonate solution containing 0.1%
Rapigest (Waters Corporation) and heated at 80 �C for 15 min.
Dissulfide bonds were reduced by addition of DTT (5 mM) and
incubation at 60 �C for 1/2 an hour. Protein samples were then
alkylated with addition of iodoacetamide (10 mM) and incuba-
tion at 23 �C for 1 h in the dark. Trypsin (1:50 trypsin:protein)
was added to the protein solution and the sample was incubated
for 16 h at 37 �C. Rapigest was then removed by adding TFA to a
final concentration of 0.5%, incubating at 37 �C for 45 min and
spinning down at 13 000 rpm for 20 min.

UPLC Settings
Eight-hundred nanograms of the tryptic sample was loaded

onto a 180 μm � 20 mm Trapping column and washed with 30
column volumes of solvent A (99.9% H2O, 0.1% Formic acid).
Peptides are separated on this column and a 75 μm � 200 mm
column using 1.3, 0.7 and 0.44% per minute gradient increases in
solvent B (99.9% ACN, 0.1% formic acid) starting from an initial
mixture of 99:1 solvent A:solvent B. A total separation time of 60,
90, and 120 min was used for the LC separation resulting in a
total experimental time of 180, 270, and 360 min for the replicate
runs. A flow rate of 300 nLmin�1 is used to perform the LC
separation and the eluent is directed into a capillary ESI tip for
direct electrospray into the mass spectrometer.

Mass Spectrometer Settings
To perform the mobility separation, the IMS T-Wave height is

set to 40 V during transmission. The wave velocity was set at 600
m/s. These settings resulted in a total separation time of 13.7 ms.
Nitrogen gas pressure in the IMS T-Wave was maintained at 3.27
mBar. The TOF mass spectrometer was operated in “V” mode
with a resolving power of >2� 104 fwhm and a mass accuracy of
3 ppm rms. MS/MS experiments were performed using the
IdentityE mode.66 Here conditions in the Transfer T-Wave
located behind the IMS T-Wave cell are alternated between
those that favor transmission of precursor ions (Collision Energy
0 V) and those that induce precursor ion dissociation (Collision
Energy ramped from 19 to 45 V). Product ions produced under
these conditions have the same chromatographic retention time
and the same ion mobility as their precursor. Precursor and
product ion mass spectra were acquired over the mass range
50�2000 amu with an acquisition rate of 0.9 s per spectrum. A
total of 10 000 MS/MS spectra were generated and subjected to
protein database searches using the Waters ProteinLynx Global
Server (PLGS) and IdentityE software suite.

Peptide Ion Identification
Ion mobility enhanced MSE spectra were submitted to the

PLGS software suite for protein database searches. Mass toler-
ances used for database searches were 5 and 10 ppm for precursor
and product ions, respectively. At least two unique peptides of
greater than a 95% probability were required for a protein to be
reported. A forward/reverse protein database search strategy was
implemented to limit the number of proteins reported. For these
data sets utilized in this study, the protein false discovery rate was
set to 1%.
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Data Analysis
To provide the best estimation of intrinsic amino acid size

parameters, it was necessary to filter the data sets to group ions
into those that may contain structural similarities. For the work
performed here, the first filter requirement was that peptide ions
be doubly charged. The second filter criterion removes all
peptides with missed cleavages to allow the use of only peptide

ions where the location of the protons is known. Next peptide
ions were divided into those containing a c-terminal arginine or
lysine residue. Finally, within these two subgroups, the peptides
were further divided by length (number of amino acids). Size
paramterization was performed as described below for each of
these groups of peptide ions. Matrix manipulation was achieved
using the MATLAB software suite.67

Figure 1. (A) Intrinsic amino acid size parameters derived from a group of doubly charged peptide ions that are 12 residues in length and each
contain a single, c-terminal arginine residue. Intrinsic size parameters have been grouped by types of amino acids. Size parameters for proline and
glycine are presented separately in light of their propensity to disrupt R-helical structure in solution. Histidine and cysteine size parameters are
also shown separately because of their relative infrequent occurrence in the proteome database. Error bars represent one standard deviation
about the mean. (B) Average size parameters obtained from doubly charged peptide ions of different residue lengths. Solid and open diamonds
represent average values for lysine- and arginine-terminated peptide ions, respectively. Error bars represent one standard deviation from
the mean.

http://pubs.acs.org/action/showImage?doi=10.1021/pr1011312&iName=master.img-001.png&w=353&h=498
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’RESULTS AND DISCUSSION

Derivation of Size Parameters
To determine the contribution of each amino acid residue to

the overall size of the peptide ions, those sequences estimated to
exhibit similar gas-phase structures are selected (see selection
criteria above and discussion below). As described previously,
from ion mobility measurements for the peptide ions within a
parametrization set,37�40 it is possible to establish a system of
equations relating size (ion mobility) to the amino acid composi-
tion using eq 1.

∑
n

j¼ 1
Xijpj ¼ yi ð1Þ

In eq 1, i and j represent a given peptide ion in the parametriza-
tion set (i = 1 tom, wherem is the total number of peptides in the
set) and the given amino acid residue (j = 1 to n where n is the
number of separate amino acids), respectively. X represents the
frequency of occurrence of the jth amino acid in the ith peptide of
the parametrization set. The variable y is related to the ion
mobility (represented here by a calibrated tD) of the ith peptide
ion. For these experiments y is calibrated to obtain a reduced tD.
Because peptide ion size is correlated to mass, it is necessary to
calibrate the system such that differences in y within a subset of
peptide ions are associated with peptide composition and
sequence rather than differences in mass alone. That is, dividing
the tD of a peptide ion by that of a “model” peptide ion of the
same mass (obtained from a second-order polynomial fit to the
tD versus molecular weight data) captures the variability in y at
given masses. This variability is presumably determined largely
by differences in peptide amino acid composition and sequence.
Finally, because the ratio of tD values is the same as the ratio that
would be obtained for collision cross sections, values of p are
referred to as intrinsic “size” parameters. In eq 1, p represents the
intrinsic size parameter of the jth amino acid.

Because eq 1 represents a linear system of m equations with n
coefficients, it can be written in matrix form as40,68,69

Xp ¼ y ð2Þ
whereX is am� nmatrix, p is a vector of n components, and y is a
vector of m components. It is straightforward to solve for
individual intrinsic size parameters using68,69

p ¼ ðXTXÞ�1XTy ð3Þ
The m/n = 1 diagonal of the variance-covariance matrix of the

size parameters (Mp) provides the variance for the size parameter
pn where

69

Mp ¼ S
m� n

ðXTXÞ�1 ð4Þ

and69

S ¼ yT_r ð5Þ
In eq 5, rk corresponds to the residuals (rk = y � Xp) of the
individual equations.70 Errors representing one standard devia-
tion can be obtained as the square root of the variance for each
intrinsic size parameter. For the study presented here, the size
parameters have been determined for groups of peptide ions
having the same length within the lysine- and arginine-termi-
nated subgroups (see above). The size parameters for the
c-terminal residues have been maintained at the previously

reported values of 1.230 and 1.150 for lysine and arginine,
respectively.37,39 This has been performed in order to remove
any effect that might treat these parameters as “compensating”
residues due to their single occurrence in every peptide ion
sequence.

Figure 1A shows the values of the intrinsic amino acid size
parameters obtained for doubly charged, arginine-terminated
peptide ions containing 12 amino acid residues. Several trends
are worth noting. First, nonpolar aliphatic residues generally have
larger intrinsic size parameters (i.e., they have a greater contribu-
tion to peptide ion size) than polar aliphatic residues. This is very
similar to the trend observed for singly charged, lysine-termi-
nated peptides, and it has been suggested that stronger interac-
tions between the charge site and polar residues may account for
the difference in size.37 Another similarity is that the size
parameters for the aromatic residues are intermediate in value
to those of the nonpolar aliphatic and the polar aliphatic residues.
Additionally, the size parameters for proline and glycine are
relatively small. When compared to the previous work,37 the size
parameter for valine obtained from this peptide ion group is
relatively large. The intrinsic size parameters for histidine and
cysteine are the smallest determined for this parametrization set.
Finally, it should be noted that the size parameter errors for
cysteine, histidine, methionine, and tryptophan are relatively
larger than those of other residues. This can be attributed to the
relatively low level of occurrence of these amino acids in the peptide
ion group used to obtain parameters. For example, the numbers of
occurrence of these respective amino acids in the 102 peptides
in this group are 7, 3, 12, and 14, respectively. In comparison,
alanine occurs 118 times within the same parametrization set.

Previously it has been demonstrated that intrinsic size para-
meters can be used to predict peptide ion collision cross
sections.37�40 The studies showed that predictions improved
upon restricting the sizes and types of peptide ions used to obtain
the parameters. The reasoning for the improvement is that ions
exhibiting similarities in length, composition (i.e., no missed
cleavages), charge, and c-terminal residue (R or K) are more
likely to adopt related gas-phase conformations; these similarities
would be reflected in the intrinsic amino acid size parameters and
thus lead to greater prediction accuracy for peptides within a
subset. Indeed, in a previous study collision cross section
prediction accuracy decreased by as much as a factor of 2 when
size parameters from one parametrization set were used in cross
section calculations for another set.39 For the present study,
seventeen peptide subgroups have been extracted from the
annotated proteome data set. Figure 1B shows the average size
parameters obtained from each of the parametrization sets
(peptides of different length) for arginine- and lysine-terminated
peptides. For the former, average values were obtained from
intrinsic size parameters determined for peptides having lengths
of 7, 8, 9, 10, 11, 12, 13, and 14 to 15 amino acid residues. The last
grouping is required because of an insufficient number of peptide
ions containing either 14 or 15 amino acid residues. For lysine-
terminated peptides, size parameters from peptide groups with
lengths of 7, 8, 9, 10, 11, 12, 13, 14, and 15 residues were
obtained. Figure 1B shows that similar trends in size parameters
are obtained for the different peptide ion subgroups.

Predicting Peptide Ion Drift Times
Size parameters can be used with amino acid composition to

predict reduced tDs using eq 1. Because peptide ion tD values are
calculated for the ions used to obtain parameters, the calculations
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can be termed retrodictions. Previously we have shown that
retrodictions are very similar in accuracy to bona fide predictions
and therefore we shall use the term predictions throughout this
work.39 The predicted tDs can be compared with experimental
values to assess the quality of the intrinsic size parameter
determination for each data set. As an example consider the
peptide ion [NTTIPTK þ 2H]2þ from the heat shock protein
SSC1. This seven-residue peptide ion has a tD peak centered at
36.31 bins. From a polynomial fit to the tD versus molecular
weight data, it is observed that a “model” peptide of the samem/z
(774.4Da) would have a peak centered at a tD of 36.65 bins. Thus
the reduced tD for [NTTIPTKþ 2H]2þ would be 0.991 (36.31/
36.65). The predicted reduced tD would be calculated according

to eq 1 as XNpNþ XTpTþ XIpIþ XPpPþ XKpK (0.143� 0.883
þ 0.429 � 0.967 þ 0.143 � 1.003 þ 0.143 � 0.936 þ 0.143 �
1.23). The calculated reduced tD for this peptide is 0.993
corresponding to a drift bin value of 36.40. This is within
0.25% of the 36.31 value associated with the peak. This is
significantly more accurate than the 36.65 value (0.94%) ob-
tained from the polynomial fit to the tD versus molecular weight
data. Supplementary Table 1 (Supporting Information) shows a
comparison of experimental and theoretical tD values for all
peptides used in this study. On average, experimental and
theoretical tDs agree to within (1.8%.

To better understand the efficacy of a size parameter predic-
tion of the data, it is instructive to make comparisons to the

Figure 2. Dot plots showing prediction accuracies of tDs for individual peptide ions as a function of molecular weight. Prediction accuracy is depicted as
the ratio of the predicted tD to the experimental tD. The top plot shows the prediction accuracy obtained by employing a polynomial fit to tD versus
molecular weight data. The bottom plot shows the prediction accuracy obtained by using intrinsic size parameters. Data in these plots are obtained from
peptide sequences containing 12 residues and a single c-terminal arginine residue.

http://pubs.acs.org/action/showImage?doi=10.1021/pr1011312&iName=master.img-002.png&w=329&h=464
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polynomial fit for a group of peptide ions. Figure 2 shows the
ratios of predicted and experimental tDs obtained for both the
size parameter fit and the polynomial fit. These have been
performed for arginine-terminated peptide ions of 12 amino acid
residues in length using the size parameter values depicted in
Figure 1A. In comparison, all predicted tD values are within 8% of
experimental values using the polynomial fit. All predicted tDs are
within 5% of experimental values using the size parameters.
Additionally, the data for the size parameter fit is more com-
pressed around the unity line indicating a higher level of accuracy.
This increased density of data points in this region is an
indication of the tD prediction improvement obtained when
using size parameters. Another way to visualize this improvement
is to compare the number of ions in the parametrization group
that are accurately predicted to within (1%. The 1% accuracy
threshold has been selected as being representative of the typical
experimental accuracy of ion mobility measurements.43 Use of
size parameters results in ∼40% of all predictions meeting this
accuracy threshold; the use of a polynomial fit to tD versus
molecular weight data results in∼18% of all predictions reaching
this same level of accuracy. Thus there is more than a 2-fold
improvement in predictive capabilities using the size parameters
compared to the polynomial fit. This advantage exists for higher
accuracy thresholds as well. For example, an improvement of a
factor of ∼1.7 is observed for predictions that are within 2% of
experimental values. Here we note that size parameters obtained
from peptide ions of this size provide the most accurate predic-
tions. That said, the average improvement for arginine-termi-
nated peptides of all sizes using the 1% accuracy threshold is
∼50%. For all comparisons reported here, a second-order
polynomial fit has been used because it has been shown to
provide the greater prediction accuracy compared to higher-
order polynomials and a linear least-squares fit.

Although the discussion has focused on the superiority of the
size parameters in predicting tDs to within 1 and 2% of experi-
mental values, it is worthwhile to consider the range of accuracy
over which this advantage holds. Consider Figure 3, which shows
the average fraction of the peptides correctly predicted as a
function of accuracy threshold. Again a comparison is drawn
between the prediction capabilities of the size parameter fit and
those of the polynomial fit to tD versus molecular weight data.
The data shown in Figure 3 suggests that a significant advantage
in predictive capabilities is attainable using intrinsic size para-
meters over an accuracy threshold range of (0.5 to (6%. At
higher accuracy threshold values, bothmodels do nearly as well in
predicting tD values.

Peptide Ion Assignments
To determine how intrinsic size parameters would aid peptide

identification efforts, it is useful to consider two factors influencing
the quality of the fit. This is accomplished by comparing the
predictions obtained for specific peptide ions with those that would
be obtained for nearly all peptide ion sequences at the same m/z
values. Consider the peptide ion [QAYAVSEKþ 2H]2þ from the
60S ribosomal protein L4 A. Using the polynomial fit to the tD
versus molecular weight data for the eight-residue peptides, a
reduced tD for the peptide ion [QAYAVSEK þ 2H]2þ is deter-
mined to be 1.037. The predicted reduced tD obtained using the
appropriate intrinsic size parameters is 0.995. Thus, the prediction
accuracy is ∼0.041 or ∼4.1%. A sampling of the complete list of
lysine-terminated peptide ions ranging in length from 7 to 10
amino acids and within 0.01 Da of the precursor ion mass (894.45
Da) yields ∼7.13 � 105 separate sequences. Predicted tDs for all
possible peptide sequences have been computed using the intrinsic
size parameters obtained from the 7-, 8-, 9-, and 10-residue, lysine-
terminated peptide ion groups. It is observed that ∼4% of all
isobaric sequences have predicted tDs that are within the prediction
accuracy ((4.1%) of the experimental sequence. In a sense, this
prediction accuracy for incorrect peptide ion assignments can be
considered a false discovery rate and will be useful in formulating a
peptide ion identification scoring scheme outlined below. Thus, for
this peptide ion, the predicted reduced tD outperforms those
obtained for ∼96.0% of nearly all possible sequences at the same
m/z.

From such an analysis of interfering sequences, one can
determine the degree of overlap at different prediction accuracy
thresholds. This is shown in Figure 4A. Here consider only the
trace with the solid square symbols as this represents data for
peptide sequences matching the mass (894.45 Da) of the peptide
ion [QAYAVSEKþ 2H]2þ. As the prediction accuracy threshold
increases from 0.005 to 0.030 the fraction of total peptide ion
sequences within the required threshold value for a match with
the experimental value increases slowly from ∼0.00 to ∼0.02.
Going from a prediction accuracy threshold of 0.030�0.040, the
fraction of total sequences predicted accurately doubles to
∼0.04. Above this value, the fraction of predicted sequences
increases dramatically to 0.21, 0.63, and 0.88 at accuracy thresh-
olds of 0.050, 0.060, and 0.070, respectively. Above an accuracy
threshold of 0.070, the fraction of predicted sequences begins to
level off approaching a value of 1 resembling a sigmoidal
dependence. The data can be fitted with an expression for the
sigmoidal curve intensity (I) according to71

I ¼ Aþ B� A

1þ e�ðx � x0Þ=w ð6Þ

Figure 3. Plots showing the fraction of database peptides predicted
accurately for given prediction threshold values. Open- and solid-circles
represent data obtained from predictions with intrinsic size parameters
and predictions obtained from a polynomial fit to tD versus molecular
weight data, respectively. Data points represent average values obtained
from peptide sequences ranging in length from 7 to 15 amino acid
residues. Error bars represent one standard deviation from the mean.
Prediction accuracy threshold (x-axis) represents the deviation from the
experimental values expressed as a fraction; a prediction accuracy
threshold of x = 0.03 would provide the fraction of all database peptides
predicted to within (3% of the experimental values.

http://pubs.acs.org/action/showImage?doi=10.1021/pr1011312&iName=master.img-003.png&w=240&h=178
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where the variables A and B represent the minimum andmaximum
values of the sigmoidal curve (0 and 1 in this case), respectively.
The variables x0 and w represent the prediction accuracy threshold
value associatedwith the inflection point of and awidth factor of the
sigmoidal curve, respectively. Using a prediction accuracy threshold
value of ∼0.060 to represent x0 and a value of ∼0.006 for w, the
data for competitive assignments to the peptide ion [QAYAVSEK
þ 2H]2þ can be fit as shown in Figure 4A.

The comparison of overlapping competitive peptide ion
assignments can be performed for other assigned peptide ions
from the proteome database. For example, Figure 4A also shows
data for accurately predicted interfering sequences having the
same masses as the peptide ions [EAYVPATK þ 2H]2þ and
[LNLFLSTK þ 2H]2þ from the proteins suppressor protein
STM1 and isocitrate dehydrogenase, respectively. The data for
competitive assignments of the former peptide ion also reveals a

Figure 4. (A) Fraction of all possible 7-,8-,9-, and 10-residue sequences meeting or exceeding the prediction thresholds (x-axis) for tDs of the select
peptide ions [EAYVPATK þ 2H]2þ (solid circles), [QAYAVSEK þ 2H]2þ (solid squares), [LNLFLSTK þ 2H]2þ (solid triangles). Because these
values show the overlap between all possible sequences of the same m/z and the correct prediction, the value can be thought of as a false discovery rate
(see text for details). Unique peptide ions from the complete list of all possible peptide ions that are within 0.01 Da of the select peptides are used in this
analysis. The three different data sets have been fitted with sigmoidal curves (solid traces) using eq 6. (B)w values (eq 6) for the three different curves as a
function of reduced tD deviation, d (see text for details) as well as a zero value. Also shown is a linear least-squares fit of the data (solid line). Plot C shows
the x0 values (eq 6) for the three different curves as a function of d (see text for details) as well as a zero value. Also shown is a linear least-squares fit of the
data (solid line).

http://pubs.acs.org/action/showImage?doi=10.1021/pr1011312&iName=master.img-004.png&w=360&h=477


2325 dx.doi.org/10.1021/pr1011312 |J. Proteome Res. 2011, 10, 2318–2329

Journal of Proteome Research ARTICLE

sigmoidal dependence albeit x0 and w values are shifted to higher
values (∼0.120 and ∼0.009, respectively). The curve obtained
for the latter peptide ion reveals a pseudosigmoidal dependence
where the x0 andw values are shifted to lower values (∼0.007 and
∼0.003, respectively). The reduced tDs for the peptide ions
[EAYVPATK þ 2H]2þ and [LNLFLSTK þ 2H]2þ are 1.104
and 1.023. Thus it is observed that as the reduced tD increases,
values for x0 and w providing the best fit to the data increase as
well. This observation is somewhat intuitive as a histogram of
reduced tDs at a given m/z value reveals a Gaussian distribution
centered about 1.000. That is, the majority of the reduced tDs are
close to unity. Therefore, higher prediction accuracy thresholds
would be required to obtain matches between competitive ion
assignments and experimental features exhibiting reduced tDs
that are significantly removed from 1.000.

To obtain a mathematical expression for a simple scoring
scheme it is possible to use the data presented in Figure 4A.
Examination of this data shows the dependence of a false
discovery rate on two factors. The first factor is the overall
prediction accuracy and the second factor is the magnitude of the
reduced tD of the experimental peak. As described above and
demonstrated in Figure 4A, these two factors are correlated. One
way to estimate potential false discovery rates for data set features
is to reconstruct sigmoidal curves (Figure 4A) for given reduced
tD values. As a first approximation this can be accomplished by
examining the dependence of w and x0 on reduced tD. In
Figure 4B and C, this dependence is depicted for w and x0,
respectively. Here the dependence is derived as a function of the
deviation of the reduced tD from unity (d). The deviation is the
fraction difference of the reduced tD from the “model” peptide
ion obtained from the polynomial fit to tD versus molecular
weight data. For the peptide ions [QAYAVSEK þ 2H]2þ,
[EAYVPATK þ 2H]2þ, and [LNLFLSTK þ 2H]2þ having
reduced tDs of 1.037, 1.104, and 1.023 the deviation values are
0.037, 0.104, and 0.023, respectively. A linear least-squares fit of
the data in Figure 4B and C provides the dependence of the
sigmoidal curve variables on d. For the w and x0 variables this
dependence is 0.0803 � dþ0.0013 and 1.1489 � d � 0.0022,
respectively.

With the prediction accuracy dependencies on reduced tD
deviation established, it is possible to construct estimated false
discovery rate curves that are specific for data set features of given
reduced tDs. This is accomplished by substituting the w and x0

dependencies as well as values for A and B into eq 6, yielding

I ¼ 1

1þ e�ðx � ð1:1489d � 0:0022ÞÞ=0:0803d þ 0:0013
ð7Þ

It is instructive to consider the false discovery rate at the limits
of high- and low-confidence matches to experimental reduced
tDs. A low-confidence assignment would consist of a small
reduced tD deviation and a large prediction accuracy threshold.
Using values of d = 0 and x = 0.15 (a worst case scenario based on
examination of database values), the exponential expression in
eq 7 would approach zero and the fraction of competitive
peptides predicted accurately becomes 1. A high-confidence
assignment where d = 0.15 and x = 0, would result in prediction
accuracy values approaching 0 as the exponential expression
approaches 3.44 � 105.

A simple scoring scheme for aiding peptide ion identification
can be devised based on eq 7. Because the power in the
exponential expression in eq 7 essentially determines the false
discovery rate, this expression can be used to provide a score for
potential sequence matches. For example, the power expression
ranges from �117.07 to 12.74 for low- and high-confidence
matches, respectively. A scoring scheme can be set up of the form

S ¼ k� ½x� ð1:1489d� 0:0022Þ�
0:0803dþ 0:0013

� �
L ð8Þ

Here, k is an arbitrary variable used to shift the scoring range onto
a positive scale. L is an arbitrary variable used to scale the output
score. Values of 117.08 and 0.7703 for k and L, respectively,
provide output scores that range from 0 to 100 for nearly all
peptide sequences.

To evaluate the new scoring approach, consider the peptide
ion [VSGVSLLALWKþ 2H]2þ from the 40S ribosomal protein
S23 which has a reduced tD of 1.047. The predicted reduced tD
for this peptide ion is 1.036. Using x = 0.011 and d = 0.047, S is
determined to be 96.38. In the yeast proteome database used to
derive the intrinsic size parameters (both arginine- and lysine-
terminated peptide ions), there are 7 different peptide ions that
are within ∼1 Da of the molecular weight (1171.702 Da) of the
peptide ion [VSGVSLLALWK þ 2H]2þ. None have higher
scores than the correct peptide; scores for these sequences range
from 90.15 to 95.80. Here we note that caution should be used
with such a scoring scheme especially when comparing values for

Table 1. Scores for Assigned Peptide Ions: Comparison to Sequences of Similar Mass

protein accessiona proteinb peptidec Sd ranke number of sequencesf

P39741 60S ribosomal protein L35 OS Saccharomyc QIAFPQR 92.65 1 6

P16862 6 phosphofructokinase subunit beta OS Sa AVAEAIQAK 87.57 1 7

P53622 Coatomer subunit alpha OS Saccharomyces IWDISGLR 95.57 1 6

P12398 Heat shock protein SSC1 mitochondrial OS IIENAEGSR 93.23 3 7

P08524 Farnesyl pyrophosphate synthase OS Sacch IGTDIQDNK 96.31 4 9

P38972 Phosphoribosylformylglycinamidine syntha VLNLPSVGSK 92.63 2 5

P38910 10 kDa heat shock protein mitochondrial TASGLYLPEK 90.00 3 5

P10614 Lanosterol 14 alpha demethylase OS Sacch GVIYDCPNSR 90.91 1 7

Q03161 Glucose 6 phosphate 1 epimerase OS Sacch GGIPLVFPVFGK 84.70 2 6

P48570 Homocitrate synthase cytosolic isozyme O SDLVDLLNIYK 96.73 1 7
a Protein accession number obtained from the Protein Knowledgebase (UniProt KB at http://www.uniprot.org/uniprot/). b First 40 characters of the
protein name in the Protein Knowledgebase. cTryptic peptide sequence obtained from the LC�MS/MS analysis. d Peptide sequence score using
predicted tD values and eq 8 (see text for details).

e Peptide sequence score rank compared with all other parametrization peptide sequences within∼1Da
of the precursor ion mass. fTotal number of sequences within ∼1 Da of the precursor ion mass.
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species for which reduced tD deviations are significantly different.
That said, the results shown above for a peptide ion exhibiting
moderate prediction accuracy and reduced tD deviation are
encouraging and suggest that in the future, a similar approach
may be useful in helping to weed out false positive identifications
by indicating more probable matches to experimental data.

Additional comparisons of peptide ion scores are presented in
Table 1. Here, the scores for 10 peptide sequences (selected at
random) are listed. For half of the comparisons, the assigned
peptide sequence yields the highest score when compared to
other database peptide sequences within ∼1 Da in mass. In two
other instances the assigned peptide sequence yields the second
highest score. In the remaining three instances, the assigned
peptide score is the median score or higher. It is instructive to
consider the cases where the assigned peptide ion did not score as
highly as other sequences. For example, the peptide ion
[IGTDIQDNK þ 2H]2þ yields the relatively high score of
96.31. However, it is the fourth highest score within a group
containing nine total peptide sequences. Scores of the three other
peptide sequences range from 96.51 to 97.07. These values are
very similar to that obtained for the assigned peptide ion. In this
situation, several peptides that are within ∼1 Da of the assigned
peptide ion in mass have predicted tDs that are similar to the
experimental tD. As such, the clustering of such high scores does
not warrant discarding the assigned peptide ion sequence.
Rather, additional evidence would be required to confirm the
peptide ion assignment.

It is instructive to consider the peptide ion sequences that have
a higher score rank than the sequence associated with the correct
identification (Table 1). Three of the assigned peptide ions have
scores yielding a rank of 3 (or lower). Two of these peptide ions
have the highest mass fraction of polar residues compared with all
other sequences in Table 1. The third peptide ion is one of the
top five ions with respect to mass fraction of polar residues.
Overall, these three peptide ions have a higher average mass
fraction of polar residues (52.5( 15.2%) compared to the other
sequences (30.9 ( 12.7%) in Table 1. Currently, no sequence
correlation can be drawn between incorrect peptide ion assign-
ments and the identified ions presumably because of the limited
number of comparisons available. Additionally, no correlation
can be made to exact peptide composition. However, it is noted
that the incorrect sequences of higher rank for all three peptides
also contain a higher mass fraction of polar residues than those
sequences of lower rank. Consider the peptide ion [IIENAEGSRþ
2H]2þ having a mass fraction of polar residues of 46.4%. The two
database peptides ions with scores of higher rank are
[AQELAEATR þ 2H]2þ and [VLQDSGLEK þ 2H]2þ. These
peptide ions have mass fractions of polar residues of 49.3 and
59.4%, respectively. The average mass fraction of polar residues for
the other scored peptide ions is 34.4 ( 14.8%. This weak
correlation suggests that the fraction of polar residues in peptide
ion sequences can influence the scoring capability of the approach.
That said, because of the limited amount of data, only a note of
caution can be suggested in the scoring of such peptides. A greater
elucidation of the effect of peptide ion sequence and composition
on overall ion scores (and size parameters) requires the develop-
ment of much larger proteome databases.

Improving Peptide Identification Capabilities Using Ion
Mobilities

Several factors need to be addressed in order to improve the
ability to aid peptide ion identification with ion mobility data.

These include improvements in ion mobility instrumentation as
well as to the method employed to determine instrinsic size
parameters for different amino acids. As mentioned above, the
development of instrumentation of higher resolving power
would provide greater accuracy in the determination of ion
mobilities and by association increased accuracy of intrinsic size
parameters for different amino acids. In a related manner, higher
resolving power may also allow the removal of interfering species
affecting the mobility determination of peaks in proteomics
mixtures. It is noted that a newer version of the Synapt HDMS
system has recently been commercialized affording ∼3 times
greater resolving power. Additionally, careful studies of T-Wave
separation parameters should be explored. It may be possible that
many high-mobility species are traveling at the velocity of the
voltage wave and are thus not separated as efficiently as other
species.

Improvements in the determination of intrinsic size para-
meters may be enhanced by instrumentation developments in a
different manner. For example, higher resolving power may allow
the resolution of peptide ion conformer types (e.g., helices,
partial helices, globules, and elongated structures). The resolu-
tion of structural types should allow increased parametrization of
peptide ion subgroups. This would require the determination of
correlations between peptide ion composition and sequence to
conformer types. It may also be necessary to employ other
methods such as molecular dynamics simulations to assign
structural types. Another factor that should aid the determination
of conformer types is the construction of much larger databases.
Many more sequence measurements would be required. As a
note of caution, with larger databases comes the problem of
increasing numbers of false positives. This is particularly proble-
matic for data to be used in the determination of intrinsic size
parameters. It is noted that a weighting factor can be incorpo-
rated into eq 3.69 Such a weighting factor may include the
probability score obtained from protein database searches.

It is instructive to consider the relevance of using intrinsic
amino acid size parameters to validate peptide ion assignments.
In a recent publication, Zubarev and Gorshkov and their co-
workers described how they addressed a basic tenet of both
analytical and engineering sciences, the tenet being a require-
ment for “...the use of a technique for a model validation
materially different (complementary) from the one employed
in the model creation”.72 For peptide ion identification in
proteomics analyses, a verification model that is not based on a
fragment ion interpretation is required. Employing retention-
time modeling algorithms, the authors found many peptide
sequences, even those with high scores, illustrating significant
deviations from the theoretical retention times. The observation
was largely attributed to the effects of chimeric spectra as
opposed to bias in the independent retention-time models.
Similarly, the present work illustrates how predicting the mobi-
lity and the use of a statistical strategy can provide increased
specificity of database search results. Therefore, the use of
accurate mass, retention-time, and ion mobility all as indepen-
dent metrics of peptide validation should significantly reduce the
false positives in complex mixture analysis.

’CONCLUSIONS

Intrinsic size parameters for amino acid residues have been
determined for a variety of peptide groups obtained from a yeast
proteome database. In general, the size parameters are very
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similar to those obtained from singly charged, lysine-terminated
peptide ions indicating a degree of similarity between the types of
structures (or elements of structure) formed by singly- and
doubly charged peptide ions. Additionally, the size parameters
are very similar for peptides of very different lengths (from 7 to
15 residues). These size parameters have been used to predict ion
mobilities (tDs). Predictions of tDs using intrinsic size parameters
are more accurate than predictions obtained from polynomial fits
to tD versus molecular weight data. This ability is proposed as a
means to aid peptide ion identification and a simple scoring
scheme has been introduced.
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